Imperial College London

The role and value of flexible CCS: UK perspective

Niall Mac Dowell

Imperial College London

niall@imperial.ac.uk

@niallmacdowell

Context for this work: zero emissions UK in 2050

The European electricity system is diverse

Europe aiming* for climate-neutrality by 2050

Electricity Systems Optimisation

How might the UK system evolve?

Dispatch patterns evolve with time

Unit dispatch of CCS

How might CCS plant behaviour change?

Some thoughts in response to Scott's webinar

- Can we quantify the value of "flexible" CCS?
- How much CCS are we likely to deploy, and how will it be used?
- Should there be a market premium for flexibility?
- Should we think about > 90% capture?
- What can solvent technology contribute?
- How do CCS plants interact with CO₂ transport infrastructure?
- Might the CO₂ storage "tail" wag the dog?

Low CAPEX CCS provides the greatest value

Value of CCS is context specific

Value ≠ cost

Which technology parameters matter?

The power system is changing...

"+" \rightarrow "+++" = low \rightarrow high value

*modelled as minimum stable generation point, up-/down time

Technology Feature	Value in future power systems
High Efficiency	+
High Flexibility*	++
Low CAPEX	+++
Dispatchability	+++
Firm capacity/ancillary service provision	+++
Low OPEX	+
High Rate of Deployment	++

Should we think about > 90% capture?

Interactions between CCGT and NETs

Interactions between BECCS and DACS

How does CCS plant interact with transport?

2040s

2030s

Dimensions in mm

How does CO₂ storage respond to varying CO₂ injection?

Reservoir model of the UK Bunter Sandstone Saline Aquifer (Noy et al. 2010)

Injection rates characteristic of UK CCS deployment

Detailed reservoir simulation implies that UK-type storage infrastructure can accept time varying injection rates without problems

Some conclusions...

- From a systems perspective, "flexible" CCS seems to add value
 - Increased CCS flexibility = reduced curtailment of renewable energy
- Regardless of iRES deployment, CCS capacity deployed remains constant
 - The services provided by CCS will likely change
- Higher rates of capture should be pursued
 - Low marginal cost, appreciable system value
- Efficiency is not as important as it used to be
 - Reducing CAPEX is of paramount importance
- In this context, solvent development can help
 - Shift the cost structure from CAPEX dominance but don't forget the gas phase
- The T&S "tail" will not wag the "CCS dog" probably...